Uncovering doubly charged scalars with dominant three-body decays using machine learning
We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC. |
---|---|
ISSN: | 2331-8422 |