Sparse Estimation: An MMSE Approach

The objective of this paper is to estimate parameters with a sparse prior via the minimum mean square error (MMSE) approach. We model the sparsity by the Bernoulli-uniform prior. The MMSE estimator gives the posterior mean of the parameter to be estimated. However, its computation involves multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive approximation 2023-04, Vol.57 (2), p.727-758
Hauptverfasser: Pang, Tongyao, Shen, Zuowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this paper is to estimate parameters with a sparse prior via the minimum mean square error (MMSE) approach. We model the sparsity by the Bernoulli-uniform prior. The MMSE estimator gives the posterior mean of the parameter to be estimated. However, its computation involves multiple integrations of many variables that is hard to implement numerically. In order to overcome this difficulty, we develop a coordinate minimization algorithm to approximate the MMSE estimator for any arbitrary given prior. We connect this algorithm to a variational model and establish a comprehensive convergence analysis. The algorithm converges to a special stationary point of the variational model, which attains the minimum of the mean square error at each coordinate when others are fixed. Then, this general algorithm is applied to the Bernoulli-uniform sparse prior and leads to a stable estimator that provides a good balance between sparsity and unbiasedness. The advantages of our sparsity model and algorithm over other approaches (e.g., the maximum a posteriori approaches) are analysed in detail and further demonstrated by numerical simulations. The applications of the general theory and algorithm developed here go beyond sparse estimation.
ISSN:0176-4276
1432-0940
DOI:10.1007/s00365-023-09623-7