Asymptotic profiles for a nonlinear Schrödinger equation with critical combined powers nonlinearity

We study asymptotic behaviour of positive ground state solutions of the nonlinear Schrödinger equation - Δ u + u = u 2 ∗ - 1 + λ u q - 1 in R N , ( P λ ) where N ≥ 3 is an integer, 2 ∗ = 2 N N - 2 is the Sobolev critical exponent, 2 < q < 2 ∗ and λ > 0 is a parameter. It is known that as λ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2023-05, Vol.304 (1), Article 13
Hauptverfasser: Ma, Shiwang, Moroz, Vitaly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study asymptotic behaviour of positive ground state solutions of the nonlinear Schrödinger equation - Δ u + u = u 2 ∗ - 1 + λ u q - 1 in R N , ( P λ ) where N ≥ 3 is an integer, 2 ∗ = 2 N N - 2 is the Sobolev critical exponent, 2 < q < 2 ∗ and λ > 0 is a parameter. It is known that as λ → 0 , after a rescaling the ground state solutions of ( P λ ) converge to a particular solution of the critical Emden-Fowler equation - Δ u = u 2 ∗ - 1 . We establish a novel sharp asymptotic characterisation of such a rescaling, which depends in a non-trivial way on the space dimension N = 3 , N = 4 or N ≥ 5 . We also discuss a connection of these results with a mass constrained problem associated to ( P λ ) . Unlike previous work of this type, our method is based on the Nehari-Pohožaev manifold minimization, which allows to control the L 2 norm of the groundstates.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-023-03271-0