On parameterized toric codes
Let X be a complete simplicial toric variety over a finite field with a split torus T X . For any matrix Q , we are interested in the subgroup Y Q of T X parameterized by the columns of Q . We give an algorithm for obtaining a basis for the unique lattice L whose lattice ideal I L is I ( Y Q ) . We...
Gespeichert in:
Veröffentlicht in: | Applicable algebra in engineering, communication and computing communication and computing, 2023-05, Vol.34 (3), p.443-467 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a complete simplicial toric variety over a finite field with a split torus
T
X
. For any matrix
Q
, we are interested in the subgroup
Y
Q
of
T
X
parameterized by the columns of
Q
. We give an algorithm for obtaining a basis for the unique lattice
L
whose lattice ideal
I
L
is
I
(
Y
Q
)
. We also give two direct algorithmic methods to compute the order of
Y
Q
, which is the length of the corresponding code
C
α
,
Y
Q
. We share procedures implementing them in
Macaulay
2
. Finally, we give a lower bound for the minimum distance of
C
α
,
Y
Q
, taking advantage of the parametric description of the subgroup
Y
Q
. As an application, we compute the main parameters of the toric codes on Hirzebruch surfaces
H
ℓ
generalizing the corresponding result given by Hansen. |
---|---|
ISSN: | 0938-1279 1432-0622 |
DOI: | 10.1007/s00200-021-00513-8 |