Sumsets and Veronese varieties

In this paper, to any subset A ⊂ Z n we explicitly associate a unique monomial projection Y n , d A of a Veronese variety, whose Hilbert function coincides with the cardinality of the t -fold sumsets t A . This link allows us to tackle the classical problem of determining the polynomial p A ∈ Q [ t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2023-05, Vol.74 (2), p.353-374
Hauptverfasser: Colarte-Gómez, Liena, Elias, Joan, Miró-Roig, Rosa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, to any subset A ⊂ Z n we explicitly associate a unique monomial projection Y n , d A of a Veronese variety, whose Hilbert function coincides with the cardinality of the t -fold sumsets t A . This link allows us to tackle the classical problem of determining the polynomial p A ∈ Q [ t ] such that | t A | = p A ( t ) for all t ≥ t 0 and the minimum integer n 0 ( A ) ≤ t 0 for which this condition is satisfied, i.e. the so-called phase transition of | t A | . We use the Castelnuovo–Mumford regularity and the geometry of Y n , d A to describe the polynomial p A ( t ) and to derive new bounds for n 0 ( A ) under some technical assumptions on the convex hull of A ; and vice versa we apply the theory of sumsets to obtain geometric information of the varieties Y n , d A .
ISSN:0010-0757
2038-4815
DOI:10.1007/s13348-022-00352-x