Sumsets and Veronese varieties
In this paper, to any subset A ⊂ Z n we explicitly associate a unique monomial projection Y n , d A of a Veronese variety, whose Hilbert function coincides with the cardinality of the t -fold sumsets t A . This link allows us to tackle the classical problem of determining the polynomial p A ∈ Q [ t...
Gespeichert in:
Veröffentlicht in: | Collectanea mathematica (Barcelona) 2023-05, Vol.74 (2), p.353-374 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, to any subset
A
⊂
Z
n
we explicitly associate a unique monomial projection
Y
n
,
d
A
of a Veronese variety, whose Hilbert function coincides with the cardinality of the
t
-fold sumsets
t
A
. This link allows us to tackle the classical problem of determining the polynomial
p
A
∈
Q
[
t
]
such that
|
t
A
|
=
p
A
(
t
)
for all
t
≥
t
0
and the minimum integer
n
0
(
A
)
≤
t
0
for which this condition is satisfied, i.e. the so-called
phase transition
of
|
t
A
|
. We use the Castelnuovo–Mumford regularity and the geometry of
Y
n
,
d
A
to describe the polynomial
p
A
(
t
)
and to derive new bounds for
n
0
(
A
)
under some technical assumptions on the convex hull of
A
; and vice versa we apply the theory of sumsets to obtain geometric information of the varieties
Y
n
,
d
A
. |
---|---|
ISSN: | 0010-0757 2038-4815 |
DOI: | 10.1007/s13348-022-00352-x |