Dynamics of 3-Homeomorphisms with Two-Dimensional Attractors and Repellers

On closed orientable 3-manifolds, we consider a class G of homeomorphisms such that the nonwandering set of each f ∈ G is the finite union of surfaces such that the restriction of some power f k on each of these surfaces is a pseudo-Anosov homeomorphism. We prove that homeomorphisms of class G exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-03, Vol.270 (5), p.683-692
Hauptverfasser: Grines, V. Z., Pochinka, O. V., Chilina, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On closed orientable 3-manifolds, we consider a class G of homeomorphisms such that the nonwandering set of each f ∈ G is the finite union of surfaces such that the restriction of some power f k on each of these surfaces is a pseudo-Anosov homeomorphism. We prove that homeomorphisms of class G exist only on 3-manifolds of the form S g × ℝ/ (J(z),r−1) , where J : S g → S g is either a pseudo-Anosov homeomorphism of the surface S g of genus g > 1 or a periodic homeomorphism commuting with some pseudo-Anosov homeomorphism. On such a manifold, we construct model homeomorphisms and find necessary and sufficient conditions for topological conjugacy of model mappings.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-023-06380-7