Evaluation of dose calculation accuracy of a commercial radiotherapy treatment planning system for adjacent radiation fields
Background:Adjacent radiation fields are applied in some radiotherapeutic cases. When using these radiation fields, considerable dose errors across the junction of radiation fields are possible. Therefore, it is necessary to evaluate the accuracy of the dose calculated by treatment planning system (...
Gespeichert in:
Veröffentlicht in: | Journal of radiotherapy in practice 2023-01, Vol.22, Article e93 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:Adjacent radiation fields are applied in some radiotherapeutic cases. When using these radiation fields, considerable dose errors across the junction of radiation fields are possible. Therefore, it is necessary to evaluate the accuracy of the dose calculated by treatment planning system (TPS) when using the adjacent radiation fields. The present study aimed to quantify the dose calculation accuracy of ISOgray TPS for the photon-photon adjacent fields.Materials and methods:To assess the accuracy of dose calculations, the dose profiles were first measured by a Semiflex ionization chamber at 1, 1·5, 5 and 10 cm depths for different field sizes (6 × 6, 10 × 10 and 20 × 20 cm2), source to surface distances (SSDs) (90, 100 and 110 cm) and beam angles (0º, 15º, 30º and 45º). In the second step, the data at corresponding depths were extracted from the ISOgray TPS. Finally, the dosimetric performance of TPS was evaluated using a gamma index analysis.Results:The overall dose calculation accuracy of ISOgray TPS was within the acceptable range for the build-up region (with acceptance criteria of dose difference (DD) = 15% and distance to agreement (DTA) = 3 mm) and the depths after the build-up region (with acceptance criteria of DD = 5% and DTA = 3 mm). Moreover, the overall accuracy of dose calculations was not affected by the field size and the SSD. It was also shown that the accuracy of dose calculations was similar for the adjacent radiation fields with beam angles of 0º, 15 º and 30 º, while a considerable decrease in the pass rate values is obtained for the adjacent radiation field with 45 º beam angle. A more detailed analysis of the findings revealed that the accuracy of dose calculations in the match line regions of the adjacent radiation fields for 1 cm beam profiles was within the acceptable range; however, it declined for other depths.Conclusions:The findings showed that the overall dose calculation accuracy of ISOgray TPS was acceptable for evaluated adjacent radiation fields. However, the accuracy of dose calculations in the match line regions of the adjacent radiation fields for the depth after build-up was not within the acceptable range. |
---|---|
ISSN: | 1460-3969 1467-1131 |
DOI: | 10.1017/S146039692300016X |