Stochastic Convergence of Sobol-Based Mahalanobis Shell Sampling Collision Probability Computation

Sample-based computation of the joint-time probability of collision motivates developing the Mahalanobis Shell Sampling (MSS) algorithm, which samples nondegenerate normal random variables, enabling rare event simulation without unduly penalizing sample size. The MSS method has unbiased estimators i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2023-05, Vol.46 (5), p.796-814
Hauptverfasser: Núñez Garzón, Ulises E., Glenn Lightsey, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sample-based computation of the joint-time probability of collision motivates developing the Mahalanobis Shell Sampling (MSS) algorithm, which samples nondegenerate normal random variables, enabling rare event simulation without unduly penalizing sample size. The MSS method has unbiased estimators in sample mean and covariance, and it may achieve arbitrary precision when approximating probability measures. For Clohessy–Wiltshire relative orbital dynamics, computational MSS exponential rates of error convergence (in the mean-square-error sense) are shown to improve by one order of magnitude (for sample mean and covariance) over Monte Carlo; when reproducing the instantaneous probability of collision, MSS has a comparable mean-square-error convergence rate performance to Monte Carlo.
ISSN:0731-5090
1533-3884
DOI:10.2514/1.G006878