Evaporation of non-circular droplets
The dynamics of thin, non-circular droplets evaporating in the diffusion-limited regime is examined. The challenging non-rectilinear mixed boundary problem this poses is solved using a novel asymptotic approach and an asymptotic expansion for the evaporative flux from the free surface of the droplet...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-04, Vol.961, Article A11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dynamics of thin, non-circular droplets evaporating in the diffusion-limited regime is examined. The challenging non-rectilinear mixed boundary problem this poses is solved using a novel asymptotic approach and an asymptotic expansion for the evaporative flux from the free surface of the droplet is found. While theoretically valid only for droplets that are close to circular, it is demonstrated that the methodology can successfully be applied to droplets with a wide variety of footprint shapes, including polygons and highly non-convex domains. As our solution for the flux fundamentally represents a novel result in potential theory, the applications are numerous, as the mixed boundary value problem arises in fields as diverse as electrostatics and contact mechanics. Here, we demonstrate the practicality of our result by considering the analytically tractable case of deposition of solute from large droplets in detail, including a matched asymptotic analysis to resolve the pressure, streamlines and deposition up to second order. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2023.229 |