Exponential H∞ Weight Learning of Takagi–Sugeno Fuzzy Neutral-Type Neural Networks with Reaction–Diffusion

The exponential H ∞ stabilization of Takagi–Sugeno fuzzy neutral-type neural networks with reaction–diffusion is investigated. A simple condition taking the form of linear matrix inequalities is presented by using Lyapunov functional, slack matrices, and the loop-invariant property of matrix trace....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2023-05, Vol.48 (5), p.7093-7108
Hauptverfasser: Gao, Dandan, Zhang, Zhi, Tai, Weipeng, Wang, Xiaolin, Zhou, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exponential H ∞ stabilization of Takagi–Sugeno fuzzy neutral-type neural networks with reaction–diffusion is investigated. A simple condition taking the form of linear matrix inequalities is presented by using Lyapunov functional, slack matrices, and the loop-invariant property of matrix trace. With the feasible solutions to these inequalities, a weight learning rule is derived to guarantee exponential H ∞ stability of the considered neural network. Then, a new LMIs-based condition on the existence of the weight learning rule is obtained by employing a more complex Lyapunov functional and the Jensen integral inequality. Finally, two numerical examples are given to illustrate the validity and lower conservatism of the proposed results.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-022-07377-1