Ordinal Regression Based on the Distributional Distance for Tabular Data

Ordinal regression is used to classify instances by considering ordinal relation between labels. Existing methods tend to decrease the accuracy when they adhere to the preservation of the ordinal relation. Therefore, we propose a distributional knowledge-based network (DK-net) that considers ordinal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2023/03/01, Vol.E106.D(3), pp.357-364
Hauptverfasser: TAJIMA, Yoshiyuki, HAMAGAMI, Tomoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ordinal regression is used to classify instances by considering ordinal relation between labels. Existing methods tend to decrease the accuracy when they adhere to the preservation of the ordinal relation. Therefore, we propose a distributional knowledge-based network (DK-net) that considers ordinal relation while maintaining high accuracy. DK-net focuses on image datasets. However, in industrial applications, one can find not only image data but also tabular data. In this study, we propose DK-neural oblivious decision ensemble (NODE), an improved version of DK-net for tabular data. DK-NODE uses NODE for feature extraction. In addition, we propose a method for adjusting the parameter that controls the degree of compliance with the ordinal relation. We experimented with three datasets: WineQuality, Abalone, and Eucalyptus dataset. The experiments showed that the proposed method achieved high accuracy and small MAE on three datasets. Notably, the proposed method had the smallest average MAE on all datasets.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2022EDP7071