Force and vision-based system for robotic sealing monitoring

Sealing process is an essential procedure that demands standardization and monitoring during the application to ensure quality. It prevents leakages, corrosion and electrical discharges on components of different products. Most of industrial manufacturers perform the manual application method, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-05, Vol.126 (1-2), p.391-403
Hauptverfasser: Pereira, Franco Rocha, Rodrigues, Caio Dimitrov, Souza, Hugo da Silva e, Neto, José Oliveira Cruz, Rocha, Matheus Chiaramonte, Barbosa, Gustavo Franco, Shiki, Sidney Bruce, Inoue, Roberto Santos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sealing process is an essential procedure that demands standardization and monitoring during the application to ensure quality. It prevents leakages, corrosion and electrical discharges on components of different products. Most of industrial manufacturers perform the manual application method, which require a proper skill to seal parts. The sealing process could be much more effective if carried out by an automated system, capable of managing the extrusion of the sealant during its application, providing a standardized procedure and favoring the human factors caused by poor working conditions. This article proposes an automated end-effector that continuously measures the contact force of the sealant during its application and also monitors the width and texture of the fillet through a computer vision technique. In order to testify the performance of the proposed system, a case study has been performed with the developed force sensing end-effector coupled to industrial robot manipulator. The results show the possibility of employing online monitoring of sealing application in order to ensure quality during the process.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-023-11110-z