Exploring Quantum Neural Networks for the Discovery and Implementation of Quantum Error-Correcting Codes

We investigate the use of Quantum Neural Networks for discovering and implementing quantum error-correcting codes. Our research showcases the efficacy of Quantum Neural Networks through the successful implementation of the Bit-Flip quantum error-correcting code using a Quantum Autoencoder, effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Chalkiadakis, A, Theocharakis, M, Barmparis, G D, Tsironis, G P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the use of Quantum Neural Networks for discovering and implementing quantum error-correcting codes. Our research showcases the efficacy of Quantum Neural Networks through the successful implementation of the Bit-Flip quantum error-correcting code using a Quantum Autoencoder, effectively correcting bit-flip errors in arbitrary logical qubit states. Additionally, we employ Quantum Neural Networks to restore states impacted by Amplitude Damping by utilizing an approximative 4-qubit error-correcting codeword. Our models required modification to the initially proposed Quantum Neural Network structure to avoid barren plateaus of the cost function and improve training time. Moreover, we propose a strategy that leverages Quantum Neural Networks to discover new encryption protocols tailored for specific quantum channels. This is exemplified by learning to generate logical qubits explicitly for the bit-flip channel. Our modified Quantum Neural Networks consistently outperformed the standard implementations across all tasks.
ISSN:2331-8422