Exploring Quantum Neural Networks for the Discovery and Implementation of Quantum Error-Correcting Codes
We investigate the use of Quantum Neural Networks for discovering and implementing quantum error-correcting codes. Our research showcases the efficacy of Quantum Neural Networks through the successful implementation of the Bit-Flip quantum error-correcting code using a Quantum Autoencoder, effective...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the use of Quantum Neural Networks for discovering and implementing quantum error-correcting codes. Our research showcases the efficacy of Quantum Neural Networks through the successful implementation of the Bit-Flip quantum error-correcting code using a Quantum Autoencoder, effectively correcting bit-flip errors in arbitrary logical qubit states. Additionally, we employ Quantum Neural Networks to restore states impacted by Amplitude Damping by utilizing an approximative 4-qubit error-correcting codeword. Our models required modification to the initially proposed Quantum Neural Network structure to avoid barren plateaus of the cost function and improve training time. Moreover, we propose a strategy that leverages Quantum Neural Networks to discover new encryption protocols tailored for specific quantum channels. This is exemplified by learning to generate logical qubits explicitly for the bit-flip channel. Our modified Quantum Neural Networks consistently outperformed the standard implementations across all tasks. |
---|---|
ISSN: | 2331-8422 |