An algebraic approach to a quartic analogue of the Kontsevich model

We consider an analogue of Kontsevich’s matrix Airy function where the cubic potential $\textrm{Tr}(\Phi^3)$ is replaced by a quartic term $\textrm{Tr}\!\left(\Phi^4\right)$ . Cumulants of the resulting measure are known to decompose into cycle types for which a recursive system of equations can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2023-05, Vol.174 (3), p.471-495
Hauptverfasser: SCHÜRMANN, JÖRG, WULKENHAAR, RAIMAR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an analogue of Kontsevich’s matrix Airy function where the cubic potential $\textrm{Tr}(\Phi^3)$ is replaced by a quartic term $\textrm{Tr}\!\left(\Phi^4\right)$ . Cumulants of the resulting measure are known to decompose into cycle types for which a recursive system of equations can be established. We develop a new, purely algebraic geometrical solution strategy for the two initial equations of the recursion, based on properties of Cauchy matrices. These structures led in subsequent work to the discovery that the quartic analogue of the Kontsevich model obeys blobbed topological recursion.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004122000366