Urea biosensors: A comprehensive review
Present study is specially designed for the recent advances in biosensors to detect and quantify urea concentration. Urea (carbamide) is an organic compound made up of the carbonyl (C=O) functional group with two −NH2 groups having chemical formula CO (NH2)2. In nature, urea is found everywhere as t...
Gespeichert in:
Veröffentlicht in: | Biotechnology and applied biochemistry 2023-04, Vol.70 (2), p.485-501 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Present study is specially designed for the recent advances in biosensors to detect and quantify urea concentration. Urea (carbamide) is an organic compound made up of the carbonyl (C=O) functional group with two −NH2 groups having chemical formula CO (NH2)2. In nature, urea is found everywhere as the result of various processes, and in the human body, urea is an end product of nitrogen metabolism. An excessive concentration of urea in the human body is responsible for different critical diseases such as indigestion, acidity, ulcers, cancer, malfunctioning of kidneys, renal failure, urinary tract obstruction, dehydration, shock, burns, gastrointestinal bleeding, and so on. Moreover, below the normal level may cause hepatic failure, nephritic syndrome, cachexia, and so on. As well as in various fields such as fishery, dairy, food preservation, agriculture, and so on, urea is normally found and its detection is necessary. In urea biosensors, enzyme urease (Urs) is used as a bioreceptor element and retains its long last activity is the critical issue in front of the researcher. During recent decades, different nanoparticles (zinc oxide, nickel oxide, iron oxide, titanium dioxide, tin(IV) oxide, etc.), conducting polymer (polyaniline, polypyrrole, etc.), conducting polymer–nanoparticles composites, carbon materials (carbon nanotubes, graphene oxide, reduced graphene oxide graphene), and so on are used in urea biosensors. The main emphasis of the present study is to provide cumulative and comprehensive information about the sensing parameters of urea biosensors based on the materials used for enzyme immobilization. Besides this special task, this review provides a fruitful discussion on the basics of biosensors briefly for new and upcoming researchers. Thus, the present study may act as a gift for a large audience that come from different fields and are working in biosensors research. |
---|---|
ISSN: | 0885-4513 1470-8744 |
DOI: | 10.1002/bab.2168 |