Characterization of the boundedness of generalized fractional integral and maximal operators on Orlicz–Morrey and weak Orlicz–Morrey spaces
We give necessary and sufficient conditions for the boundedness of generalized fractional integral and maximal operators on Orlicz–Morrey and weak Orlicz–Morrey spaces. To do this, we prove the weak–weak type modular inequality of the Hardy–Littlewood maximal operator with respect to the Young funct...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-04, Vol.296 (4), p.1483-1503 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give necessary and sufficient conditions for the boundedness of generalized fractional integral and maximal operators on Orlicz–Morrey and weak Orlicz–Morrey spaces. To do this, we prove the weak–weak type modular inequality of the Hardy–Littlewood maximal operator with respect to the Young function. Orlicz–Morrey spaces contain Lp$L^p$ spaces (1≤p≤∞$1\le p\le \infty$), Orlicz spaces, and generalized Morrey spaces as special cases. Hence, we get necessary and sufficient conditions on these function spaces as corollaries. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202000332 |