Rank gain of Jacobians over number field extensions with prescribed Galois groups

We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2023-04, Vol.296 (4), p.1469-1482
Hauptverfasser: Im, Bo‐Hae, König, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1482
container_issue 4
container_start_page 1469
container_title Mathematische Nachrichten
container_volume 296
creator Im, Bo‐Hae
König, Joachim
description We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.
doi_str_mv 10.1002/mana.202100125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799936929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799936929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2725-66fdd6e2fbaa5a15fd4a1e1e9c747fc50869046ceb1b3d3a017539f76b7b42bd3</originalsourceid><addsrcrecordid>eNqFkM1PAyEQxYnRxFq9eibxvBXYBcqxafxM1Wg08UZgFyp1Cyt0rf3vpanRo6eXyfzezMsD4BSjEUaInC-VVyOCSB4woXtggCkhBWGY7YNBBmhBx9XrIThKaYEQEoKzAXh8Uv4dzpXzMFh4q-qgnfIJhk8Toe-XOot1pm2g-VoZn1zIy7VbvcEumlRHp00Dr1QbXILzGPouHYMDq9pkTn50CF4uL56n18Xs4epmOpkVNeE5C2O2aZghVitFFaa2qRQ22IiaV9zWFI2ZQBWrjca6bEqFMKelsJxpriuim3IIznZ3uxg-epNWchH66PNLSbgQomSCiEyNdlQdQ0rRWNlFt1RxIzGS29rktjb5W1s2iJ1h7Vqz-YeWd5P7yZ_3G6Plcf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799936929</pqid></control><display><type>article</type><title>Rank gain of Jacobians over number field extensions with prescribed Galois groups</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Im, Bo‐Hae ; König, Joachim</creator><creatorcontrib>Im, Bo‐Hae ; König, Joachim</creatorcontrib><description>We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202100125</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Curves ; elliptic curve ; Fields (mathematics) ; function field extensions ; Galois theory ; Group theory ; Jacobian variety ; Jacobians ; Number theory ; Parity ; Permutations ; root number</subject><ispartof>Mathematische Nachrichten, 2023-04, Vol.296 (4), p.1469-1482</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2725-66fdd6e2fbaa5a15fd4a1e1e9c747fc50869046ceb1b3d3a017539f76b7b42bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202100125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202100125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Im, Bo‐Hae</creatorcontrib><creatorcontrib>König, Joachim</creatorcontrib><title>Rank gain of Jacobians over number field extensions with prescribed Galois groups</title><title>Mathematische Nachrichten</title><description>We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.</description><subject>Curves</subject><subject>elliptic curve</subject><subject>Fields (mathematics)</subject><subject>function field extensions</subject><subject>Galois theory</subject><subject>Group theory</subject><subject>Jacobian variety</subject><subject>Jacobians</subject><subject>Number theory</subject><subject>Parity</subject><subject>Permutations</subject><subject>root number</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAyEQxYnRxFq9eibxvBXYBcqxafxM1Wg08UZgFyp1Cyt0rf3vpanRo6eXyfzezMsD4BSjEUaInC-VVyOCSB4woXtggCkhBWGY7YNBBmhBx9XrIThKaYEQEoKzAXh8Uv4dzpXzMFh4q-qgnfIJhk8Toe-XOot1pm2g-VoZn1zIy7VbvcEumlRHp00Dr1QbXILzGPouHYMDq9pkTn50CF4uL56n18Xs4epmOpkVNeE5C2O2aZghVitFFaa2qRQ22IiaV9zWFI2ZQBWrjca6bEqFMKelsJxpriuim3IIznZ3uxg-epNWchH66PNLSbgQomSCiEyNdlQdQ0rRWNlFt1RxIzGS29rktjb5W1s2iJ1h7Vqz-YeWd5P7yZ_3G6Plcf8</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Im, Bo‐Hae</creator><creator>König, Joachim</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202304</creationdate><title>Rank gain of Jacobians over number field extensions with prescribed Galois groups</title><author>Im, Bo‐Hae ; König, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2725-66fdd6e2fbaa5a15fd4a1e1e9c747fc50869046ceb1b3d3a017539f76b7b42bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Curves</topic><topic>elliptic curve</topic><topic>Fields (mathematics)</topic><topic>function field extensions</topic><topic>Galois theory</topic><topic>Group theory</topic><topic>Jacobian variety</topic><topic>Jacobians</topic><topic>Number theory</topic><topic>Parity</topic><topic>Permutations</topic><topic>root number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Bo‐Hae</creatorcontrib><creatorcontrib>König, Joachim</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Bo‐Hae</au><au>König, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank gain of Jacobians over number field extensions with prescribed Galois groups</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2023-04</date><risdate>2023</risdate><volume>296</volume><issue>4</issue><spage>1469</spage><epage>1482</epage><pages>1469-1482</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202100125</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2023-04, Vol.296 (4), p.1469-1482
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2799936929
source Wiley Online Library Journals Frontfile Complete
subjects Curves
elliptic curve
Fields (mathematics)
function field extensions
Galois theory
Group theory
Jacobian variety
Jacobians
Number theory
Parity
Permutations
root number
title Rank gain of Jacobians over number field extensions with prescribed Galois groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20gain%20of%20Jacobians%20over%20number%20field%20extensions%20with%20prescribed%20Galois%20groups&rft.jtitle=Mathematische%20Nachrichten&rft.au=Im,%20Bo%E2%80%90Hae&rft.date=2023-04&rft.volume=296&rft.issue=4&rft.spage=1469&rft.epage=1482&rft.pages=1469-1482&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202100125&rft_dat=%3Cproquest_cross%3E2799936929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799936929&rft_id=info:pmid/&rfr_iscdi=true