Rank gain of Jacobians over number field extensions with prescribed Galois groups
We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) pro...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-04, Vol.296 (4), p.1469-1482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1482 |
---|---|
container_issue | 4 |
container_start_page | 1469 |
container_title | Mathematische Nachrichten |
container_volume | 296 |
creator | Im, Bo‐Hae König, Joachim |
description | We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties. |
doi_str_mv | 10.1002/mana.202100125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799936929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799936929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2725-66fdd6e2fbaa5a15fd4a1e1e9c747fc50869046ceb1b3d3a017539f76b7b42bd3</originalsourceid><addsrcrecordid>eNqFkM1PAyEQxYnRxFq9eibxvBXYBcqxafxM1Wg08UZgFyp1Cyt0rf3vpanRo6eXyfzezMsD4BSjEUaInC-VVyOCSB4woXtggCkhBWGY7YNBBmhBx9XrIThKaYEQEoKzAXh8Uv4dzpXzMFh4q-qgnfIJhk8Toe-XOot1pm2g-VoZn1zIy7VbvcEumlRHp00Dr1QbXILzGPouHYMDq9pkTn50CF4uL56n18Xs4epmOpkVNeE5C2O2aZghVitFFaa2qRQ22IiaV9zWFI2ZQBWrjca6bEqFMKelsJxpriuim3IIznZ3uxg-epNWchH66PNLSbgQomSCiEyNdlQdQ0rRWNlFt1RxIzGS29rktjb5W1s2iJ1h7Vqz-YeWd5P7yZ_3G6Plcf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799936929</pqid></control><display><type>article</type><title>Rank gain of Jacobians over number field extensions with prescribed Galois groups</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Im, Bo‐Hae ; König, Joachim</creator><creatorcontrib>Im, Bo‐Hae ; König, Joachim</creatorcontrib><description>We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202100125</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Curves ; elliptic curve ; Fields (mathematics) ; function field extensions ; Galois theory ; Group theory ; Jacobian variety ; Jacobians ; Number theory ; Parity ; Permutations ; root number</subject><ispartof>Mathematische Nachrichten, 2023-04, Vol.296 (4), p.1469-1482</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2725-66fdd6e2fbaa5a15fd4a1e1e9c747fc50869046ceb1b3d3a017539f76b7b42bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202100125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202100125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Im, Bo‐Hae</creatorcontrib><creatorcontrib>König, Joachim</creatorcontrib><title>Rank gain of Jacobians over number field extensions with prescribed Galois groups</title><title>Mathematische Nachrichten</title><description>We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.</description><subject>Curves</subject><subject>elliptic curve</subject><subject>Fields (mathematics)</subject><subject>function field extensions</subject><subject>Galois theory</subject><subject>Group theory</subject><subject>Jacobian variety</subject><subject>Jacobians</subject><subject>Number theory</subject><subject>Parity</subject><subject>Permutations</subject><subject>root number</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAyEQxYnRxFq9eibxvBXYBcqxafxM1Wg08UZgFyp1Cyt0rf3vpanRo6eXyfzezMsD4BSjEUaInC-VVyOCSB4woXtggCkhBWGY7YNBBmhBx9XrIThKaYEQEoKzAXh8Uv4dzpXzMFh4q-qgnfIJhk8Toe-XOot1pm2g-VoZn1zIy7VbvcEumlRHp00Dr1QbXILzGPouHYMDq9pkTn50CF4uL56n18Xs4epmOpkVNeE5C2O2aZghVitFFaa2qRQ22IiaV9zWFI2ZQBWrjca6bEqFMKelsJxpriuim3IIznZ3uxg-epNWchH66PNLSbgQomSCiEyNdlQdQ0rRWNlFt1RxIzGS29rktjb5W1s2iJ1h7Vqz-YeWd5P7yZ_3G6Plcf8</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Im, Bo‐Hae</creator><creator>König, Joachim</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202304</creationdate><title>Rank gain of Jacobians over number field extensions with prescribed Galois groups</title><author>Im, Bo‐Hae ; König, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2725-66fdd6e2fbaa5a15fd4a1e1e9c747fc50869046ceb1b3d3a017539f76b7b42bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Curves</topic><topic>elliptic curve</topic><topic>Fields (mathematics)</topic><topic>function field extensions</topic><topic>Galois theory</topic><topic>Group theory</topic><topic>Jacobian variety</topic><topic>Jacobians</topic><topic>Number theory</topic><topic>Parity</topic><topic>Permutations</topic><topic>root number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Bo‐Hae</creatorcontrib><creatorcontrib>König, Joachim</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Bo‐Hae</au><au>König, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank gain of Jacobians over number field extensions with prescribed Galois groups</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2023-04</date><risdate>2023</risdate><volume>296</volume><issue>4</issue><spage>1469</spage><epage>1482</epage><pages>1469-1482</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202100125</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2023-04, Vol.296 (4), p.1469-1482 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2799936929 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Curves elliptic curve Fields (mathematics) function field extensions Galois theory Group theory Jacobian variety Jacobians Number theory Parity Permutations root number |
title | Rank gain of Jacobians over number field extensions with prescribed Galois groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20gain%20of%20Jacobians%20over%20number%20field%20extensions%20with%20prescribed%20Galois%20groups&rft.jtitle=Mathematische%20Nachrichten&rft.au=Im,%20Bo%E2%80%90Hae&rft.date=2023-04&rft.volume=296&rft.issue=4&rft.spage=1469&rft.epage=1482&rft.pages=1469-1482&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202100125&rft_dat=%3Cproquest_cross%3E2799936929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799936929&rft_id=info:pmid/&rfr_iscdi=true |