Rank gain of Jacobians over number field extensions with prescribed Galois groups

We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2023-04, Vol.296 (4), p.1469-1482
Hauptverfasser: Im, Bo‐Hae, König, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a Galois group permutation‐isomorphic to a prescribed group G (in short, “G‐extensions”). In particular, for alternating groups and (an infinite family of) projective linear groups G, we show that most elliptic curves over (for example) Q$\mathbb {Q}$ gain rank over infinitely many G‐extensions, conditional only on the parity conjecture. More generally, we provide a theoretical criterion, which allows to deduce that “many” elliptic curves gain rank over infinitely many G‐extensions, conditional on the parity conjecture and on the existence of geometric Galois realizations with group G and certain local properties.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202100125