Learning Resilient Radio Resource Management Policies with Graph Neural Networks

We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2023-01, Vol.71, p.1-14
Hauptverfasser: NaderiAlizadeh, Navid, Eisen, Mark, Ribeiro, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on signal processing
container_volume 71
creator NaderiAlizadeh, Navid
Eisen, Mark
Ribeiro, Alejandro
description We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5^\mathrm{th} percentile rate-a metric that quantifies the level of fairness in the resource allocation decisions-as compared to baseline algorithms.
doi_str_mv 10.1109/TSP.2023.3255547
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2799861164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10066838</ieee_id><sourcerecordid>2799861164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-9c86cf811aabdc3c6cc3e6402b5725b9fa83231d79a82e26fa547e1bcb85c5353</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk7xd-wRIShIBapSJDbLcS-tS5oUO1XFv8dROzDdne597-NB6JrgESFY380_piOKKRsxKoTgxQkaEM1JjnkhT1OOBcuFKr7O0UWMa4wJ51oO0HQCNjS-WWYziL720HTZzC5829ftLjjIXm1jl7DpO9O29s5DzPa-W2XjYLer7A12wdYpdPs2fMdLdFbZOsLVMQ7R59Pj_OE5n7yPXx7uJ7mjmna5dkq6ShFibblwzEnnGEiOaSkKKkpdWcUoI4tCW0WBysqmn4CUrlTCCSbYEN0e5m5D-7OD2Jl1OrdJKw0ttFaSEMmTCh9ULrQxBqjMNviNDb-GYNNzM4mb6bmZI7dkuTlYPAD8k2MpFVPsD0kGabs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799861164</pqid></control><display><type>article</type><title>Learning Resilient Radio Resource Management Policies with Graph Neural Networks</title><source>IEEE Xplore</source><creator>NaderiAlizadeh, Navid ; Eisen, Mark ; Ribeiro, Alejandro</creator><creatorcontrib>NaderiAlizadeh, Navid ; Eisen, Mark ; Ribeiro, Alejandro</creatorcontrib><description>We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;5^\mathrm{th}&lt;/tex-math&gt;&lt;/inline-formula&gt; percentile rate-a metric that quantifies the level of fairness in the resource allocation decisions-as compared to baseline algorithms.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3255547</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Graph neural networks ; Group communication ; Interference ; interference channels ; Lagrangian duality ; Neural networks ; Optimization ; Permutations ; Policies ; Power control ; primal-dual learning ; resilient radio resource management ; Resource allocation ; Resource management ; Slack variables ; Topology ; unsupervised learning ; Wireless communication ; Wireless networks ; Wireless power control ; Wireless sensor networks</subject><ispartof>IEEE transactions on signal processing, 2023-01, Vol.71, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-9c86cf811aabdc3c6cc3e6402b5725b9fa83231d79a82e26fa547e1bcb85c5353</citedby><cites>FETCH-LOGICAL-c292t-9c86cf811aabdc3c6cc3e6402b5725b9fa83231d79a82e26fa547e1bcb85c5353</cites><orcidid>0000-0002-4891-6726 ; 0000-0002-5877-7950 ; 0000-0003-4230-9906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10066838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10066838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>NaderiAlizadeh, Navid</creatorcontrib><creatorcontrib>Eisen, Mark</creatorcontrib><creatorcontrib>Ribeiro, Alejandro</creatorcontrib><title>Learning Resilient Radio Resource Management Policies with Graph Neural Networks</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;5^\mathrm{th}&lt;/tex-math&gt;&lt;/inline-formula&gt; percentile rate-a metric that quantifies the level of fairness in the resource allocation decisions-as compared to baseline algorithms.</description><subject>Algorithms</subject><subject>Graph neural networks</subject><subject>Group communication</subject><subject>Interference</subject><subject>interference channels</subject><subject>Lagrangian duality</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Permutations</subject><subject>Policies</subject><subject>Power control</subject><subject>primal-dual learning</subject><subject>resilient radio resource management</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Slack variables</subject><subject>Topology</subject><subject>unsupervised learning</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless power control</subject><subject>Wireless sensor networks</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk7xd-wRIShIBapSJDbLcS-tS5oUO1XFv8dROzDdne597-NB6JrgESFY380_piOKKRsxKoTgxQkaEM1JjnkhT1OOBcuFKr7O0UWMa4wJ51oO0HQCNjS-WWYziL720HTZzC5829ftLjjIXm1jl7DpO9O29s5DzPa-W2XjYLer7A12wdYpdPs2fMdLdFbZOsLVMQ7R59Pj_OE5n7yPXx7uJ7mjmna5dkq6ShFibblwzEnnGEiOaSkKKkpdWcUoI4tCW0WBysqmn4CUrlTCCSbYEN0e5m5D-7OD2Jl1OrdJKw0ttFaSEMmTCh9ULrQxBqjMNviNDb-GYNNzM4mb6bmZI7dkuTlYPAD8k2MpFVPsD0kGabs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>NaderiAlizadeh, Navid</creator><creator>Eisen, Mark</creator><creator>Ribeiro, Alejandro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4891-6726</orcidid><orcidid>https://orcid.org/0000-0002-5877-7950</orcidid><orcidid>https://orcid.org/0000-0003-4230-9906</orcidid></search><sort><creationdate>20230101</creationdate><title>Learning Resilient Radio Resource Management Policies with Graph Neural Networks</title><author>NaderiAlizadeh, Navid ; Eisen, Mark ; Ribeiro, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-9c86cf811aabdc3c6cc3e6402b5725b9fa83231d79a82e26fa547e1bcb85c5353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Graph neural networks</topic><topic>Group communication</topic><topic>Interference</topic><topic>interference channels</topic><topic>Lagrangian duality</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Permutations</topic><topic>Policies</topic><topic>Power control</topic><topic>primal-dual learning</topic><topic>resilient radio resource management</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Slack variables</topic><topic>Topology</topic><topic>unsupervised learning</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless power control</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NaderiAlizadeh, Navid</creatorcontrib><creatorcontrib>Eisen, Mark</creatorcontrib><creatorcontrib>Ribeiro, Alejandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NaderiAlizadeh, Navid</au><au>Eisen, Mark</au><au>Ribeiro, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Resilient Radio Resource Management Policies with Graph Neural Networks</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>71</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;5^\mathrm{th}&lt;/tex-math&gt;&lt;/inline-formula&gt; percentile rate-a metric that quantifies the level of fairness in the resource allocation decisions-as compared to baseline algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3255547</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4891-6726</orcidid><orcidid>https://orcid.org/0000-0002-5877-7950</orcidid><orcidid>https://orcid.org/0000-0003-4230-9906</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2023-01, Vol.71, p.1-14
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_2799861164
source IEEE Xplore
subjects Algorithms
Graph neural networks
Group communication
Interference
interference channels
Lagrangian duality
Neural networks
Optimization
Permutations
Policies
Power control
primal-dual learning
resilient radio resource management
Resource allocation
Resource management
Slack variables
Topology
unsupervised learning
Wireless communication
Wireless networks
Wireless power control
Wireless sensor networks
title Learning Resilient Radio Resource Management Policies with Graph Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Resilient%20Radio%20Resource%20Management%20Policies%20with%20Graph%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=NaderiAlizadeh,%20Navid&rft.date=2023-01-01&rft.volume=71&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3255547&rft_dat=%3Cproquest_RIE%3E2799861164%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799861164&rft_id=info:pmid/&rft_ieee_id=10066838&rfr_iscdi=true