Learning Resilient Radio Resource Management Policies with Graph Neural Networks

We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2023-01, Vol.71, p.1-14
Hauptverfasser: NaderiAlizadeh, Navid, Eisen, Mark, Ribeiro, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5^\mathrm{th} percentile rate-a metric that quantifies the level of fairness in the resource allocation decisions-as compared to baseline algorithms.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2023.3255547