PETERZIL–STEINHORN SUBGROUPS AND -STABILIZERS IN ACF

We consider G , a linear algebraic group defined over $\Bbbk $ , an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K , we can associate to it a compact G -space $S^\mu _G(\Bbbk )$ consisting of $\mu $ -types on G . We sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2023-05, Vol.22 (3), p.1003-1022
Hauptverfasser: Kamensky, Moshe, Starchenko, Sergei, Ye, Jinhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider G , a linear algebraic group defined over $\Bbbk $ , an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K , we can associate to it a compact G -space $S^\mu _G(\Bbbk )$ consisting of $\mu $ -types on G . We show that for each $p_\mu \in S^\mu _G(\Bbbk )$ , $\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$ is a solvable infinite algebraic group when $p_\mu $ is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of $\mathrm {Stab}\left (p_\mu \right )$ in terms of the dimension of p .
ISSN:1474-7480
1475-3030
DOI:10.1017/S147474802100030X