PETERZIL–STEINHORN SUBGROUPS AND -STABILIZERS IN ACF
We consider G , a linear algebraic group defined over $\Bbbk $ , an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K , we can associate to it a compact G -space $S^\mu _G(\Bbbk )$ consisting of $\mu $ -types on G . We sh...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2023-05, Vol.22 (3), p.1003-1022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider
G
, a linear algebraic group defined over
$\Bbbk $
, an algebraically closed field (ACF). By considering
$\Bbbk $
as an embedded residue field of an algebraically closed valued field
K
, we can associate to it a compact
G
-space
$S^\mu _G(\Bbbk )$
consisting of
$\mu $
-types on
G
. We show that for each
$p_\mu \in S^\mu _G(\Bbbk )$
,
$\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$
is a solvable infinite algebraic group when
$p_\mu $
is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of
$\mathrm {Stab}\left (p_\mu \right )$
in terms of the dimension of
p
. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S147474802100030X |