Renormalized Classical Theory of Quantum Magnets
We derive a renormalized classical spin (RCS) theory for \(S > 1/2\) quantum magnets by constraining a generalized classical theory that includes all multipolar fluctuations to a reduced CP\(^1\) phase space of dipolar SU(\(2\)) coherent states. When the spin Hamiltonian \(\hat{\cal{H}}^{S}\) is...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a renormalized classical spin (RCS) theory for \(S > 1/2\) quantum magnets by constraining a generalized classical theory that includes all multipolar fluctuations to a reduced CP\(^1\) phase space of dipolar SU(\(2\)) coherent states. When the spin Hamiltonian \(\hat{\cal{H}}^{S}\) is linear in the spin operators \(\hat{\boldsymbol{S}}_j\) for each lattice site \(j\), the RCS Hamiltonian \(\tilde{\cal{H}}_{\rm cl}\) coincides with the usual classical model \(\cal{H}_{\rm cl} = \lim_{S\rightarrow\infty} \hat{\cal{H}}^S\). In the presence of non-linear terms, however, the RCS theory is more accurate than \(\cal{H}_{\rm cl}\). For the many materials modeled by spin Hamiltonians with (non-linear) single-ion anisotropy terms, the use of the RCS theory is essential to accurately model phase diagrams and to extract the correct Hamiltonian parameters from neutron scattering data |
---|---|
ISSN: | 2331-8422 |