SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization

We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
1. Verfasser: Levy, Kfir Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Levy, Kfir Y
description We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2799276880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799276880</sourcerecordid><originalsourceid>FETCH-proquest_journals_27992768803</originalsourceid><addsrcrecordid>eNqNjMsKgkAUQIcgSMp_uNBamMZ8tbUnCBXTXkRGGtG55oxafX0u_IBWZ3EOZ0Ys5robJ9wytiC21iWllPkB8zzXIpwnOORZ5fDTfge8wgHunWg_cEOpjIZL3bTYC0hwiqDAFrjB_JlpI3OIUfXiDdfGyFp-MyNRrci8yCot7IlLsj4eHvHZGVevTmiTlti1alQpC6KIBX4YUve_6geaQD9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799276880</pqid></control><display><type>article</type><title>SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization</title><source>Free E- Journals</source><creator>Levy, Kfir Y</creator><creatorcontrib>Levy, Kfir Y</creatorcontrib><description>We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Optimization</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Levy, Kfir Y</creatorcontrib><title>SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization</title><title>arXiv.org</title><description>We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates.</description><subject>Convexity</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKgkAUQIcgSMp_uNBamMZ8tbUnCBXTXkRGGtG55oxafX0u_IBWZ3EOZ0Ys5robJ9wytiC21iWllPkB8zzXIpwnOORZ5fDTfge8wgHunWg_cEOpjIZL3bTYC0hwiqDAFrjB_JlpI3OIUfXiDdfGyFp-MyNRrci8yCot7IlLsj4eHvHZGVevTmiTlti1alQpC6KIBX4YUve_6geaQD9M</recordid><startdate>20230409</startdate><enddate>20230409</enddate><creator>Levy, Kfir Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230409</creationdate><title>SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization</title><author>Levy, Kfir Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27992768803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Levy, Kfir Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Kfir Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization</atitle><jtitle>arXiv.org</jtitle><date>2023-04-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2799276880
source Free E- Journals
subjects Convexity
Optimization
title SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SLowcal-SGD:%20Slow%20Query%20Points%20Improve%20Local-SGD%20for%20Stochastic%20Convex%20Optimization&rft.jtitle=arXiv.org&rft.au=Levy,%20Kfir%20Y&rft.date=2023-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2799276880%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799276880&rft_id=info:pmid/&rfr_iscdi=true