SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates. |
---|---|
ISSN: | 2331-8422 |