SnOxS2−x/GNS nanocomposites for reversible and high-capacity lithium-ion batteries

SnO2 and SnS2 anode materials can improve the cycle stability of tin-based electrodes compared with Sn. However, they usually lead to huge initial irreversible capability and lower initial efficiency. To solve these problems, we reported SnOxS2−x/GNS nanocomposites with a large surface area and smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2023-04, Vol.7 (8), p.1839-1845
Hauptverfasser: Yang, Ke, Yan, Changyu, Liu, Xuejiao, Chen, Qihan, Dong, Boxu, Guo, Hongran, Qian, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SnO2 and SnS2 anode materials can improve the cycle stability of tin-based electrodes compared with Sn. However, they usually lead to huge initial irreversible capability and lower initial efficiency. To solve these problems, we reported SnOxS2−x/GNS nanocomposites with a large surface area and small particle size, which can improve the kinetics of the electrochemical reactions and realize a reversible Li+ storage process. The obtained SnOxS2−x/GNS nanocomposites (x = 0.3–1.3) have homogenously anchored on graphene nanosheets, which consists of a single phase (SnO2 or SnS2) nanocrystal (3–5 nm) and are surrounded by large amorphous areas. This unique structure makes the Li+ storage process of the obtained nanocomposites fully reversible. Specifically, the SnOS/GNS nanocomposite exhibits a good cycling performance of 1066 mA h g−1 at 0.2 A g−1 after 50 cycles and a rate capability of 402 mA h g−1 at 2 A g−1.
ISSN:2398-4902
DOI:10.1039/d3se00141e