A Multifunctional Catalytic Interlayer for Propelling Solid–Solid Conversion Kinetics of Li2S2 to Li2S in Lithium–Sulfur Batteries

The theoretically high‐energy‐density lithium–sulfur batteries (LSBs) are seriously limited by the disadvantages including the shuttle effect of soluble lithium polysulfides (LiPSs) and the sluggish sulfur redox kinetics, especially for the most difficult solid–solid conversion of Li2S2 to Li2S. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-04, Vol.33 (15), p.n/a
Hauptverfasser: Zuo, Xintao, Zhen, Mengmeng, Liu, Dapeng, Yu, Haohan, Feng, Xilan, Zhou, Wei, Wang, Hua, Zhang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theoretically high‐energy‐density lithium–sulfur batteries (LSBs) are seriously limited by the disadvantages including the shuttle effect of soluble lithium polysulfides (LiPSs) and the sluggish sulfur redox kinetics, especially for the most difficult solid–solid conversion of Li2S2 to Li2S. Herein, a multifunctional catalytic interlayer to improve the performance of LSBs is tried to introduce, in which Fe1–xS/Fe3C nanoparticles are embedded in the N/S dual‐doped carbon network (NSC) composed by nanosheets and nanotubes (the final product is named as FeSC@NSC). The well‐designed 3D NSC network endows the interlayer with a satisfactory LiPSs capture‐catalytic ability, thus ensuring fast redox reaction kinetics and suppressing LiPSs shuttling. The density functional theory calculations disclose the catalytic mechanisms that FeSC@NSC greatly improves the liquid–solid (LiPSs to Li2S2) conversion and unexpectedly the solid–solid (Li2S2 to Li2S) one. As a result, the LSBs based on the FeSC@NSC interlayer can achieve a high specific capacity of 1118 mAh g−1 at a current density of 0.2 C, and a relatively stable capacity of 415 mAh g−1 at a large current density of 2.0 C after 700 cycles as well as superior rate performance. A multifunctional catalytic interlayer is designed, in which Fe1–xS/Fe3C nanoparticles are firmly embedded in N/S dual‐doped carbon networks (FeSC@NSC). The as‐obtained FeSC@NSC as an active electrocatalyst propels the conversion kinetics of LiPSs to Li2S by reducing the free energy barriers of the overall sulfur redox reactions, thus ensuring fast redox reaction kinetics.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202214206