The Performance Analysis of Digital Filters and ANN in De-noising of Speech and Biomedical Signal
A huge number of algorithms are found in recent literature to de-noise a signal or enhancement of signal. In this paper we use: static filters, digital adaptive filters, discrete wavelet transform (DWT), backpropagation, Hopfield neural network (NN) and convolutional neural network (CNN) to de-noise...
Gespeichert in:
Veröffentlicht in: | International journal of image, graphics and signal processing graphics and signal processing, 2023-02, Vol.15 (1), p.63-78 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A huge number of algorithms are found in recent literature to de-noise a signal or enhancement of signal. In this paper we use: static filters, digital adaptive filters, discrete wavelet transform (DWT), backpropagation, Hopfield neural network (NN) and convolutional neural network (CNN) to de-noise both speech and biomedical signals. The relative performance of ten de-noising methods of the paper is measured using signal to noise ratio (SNR) in dB shown in tabular form. The objective of this paper is to select the best algorithm in de-noising of speech and biomedical signals separately. In this paper we experimentally found that, the backpropagation NN is the best for de-noising of biomedical signal and CNN is found as the best for de-noising of speech signal, where the processing time of CNN is found three times higher than that of backpropagation. |
---|---|
ISSN: | 2074-9074 2074-9082 |
DOI: | 10.5815/ijigsp.2023.01.06 |