Local magnetic and geometric structure in Mn-doped La(Fe,Si)13

Magnetic cooling has the potential to replace conventional gas compression refrigeration. Materials such as La(Fe,Si)\(_{13}\) exhibit a sizeable first-order magnetocaloric effect, and it is possible to tailor the phase transition towards room temperature by Mn-H-doping, resulting in a large tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Eggert, Benedikt, Lill, Johanna, Günzing, Damian, Pillich, Cynthia, Terwey, Alexandra, Radulov, Ilyia A, Wilhelm, Fabrice, Rogalev, Andrei, Rovezzi, Mauro, Skokov, Konstantin, Ollefs, Katharina, Gutfleisch, Oliver, Gruner, Markus E, Wende, Heiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic cooling has the potential to replace conventional gas compression refrigeration. Materials such as La(Fe,Si)\(_{13}\) exhibit a sizeable first-order magnetocaloric effect, and it is possible to tailor the phase transition towards room temperature by Mn-H-doping, resulting in a large temperature range for operation. Within this work, we discuss variations of the electronic and lattice structure in La(Fe,Si)\(_{13}\) with increasing Mn content utilizing X-ray magnetic circular dichroism (XMCD) and extended X-ray absorption fine structure spectroscopy (EXAFS). While XMCD shows a decrease of the magnetic polarization at the Fe K edge, low-temperature EXAFS measurements indicate increased positional disorder in the La environment that is otherwise absent for Fe and Mn. First-principles calculations link the positional disorder to an enlarged Mn-Si distance -- explaining the increased positional disorder in the La surrounding.
ISSN:2331-8422