About optimal loss function for training physics-informed neural networks under respecting causality

A method is presented that allows to reduce a problem described by differential equations with initial and boundary conditions to the problem described only by differential equations. The advantage of using the modified problem for physics-informed neural networks (PINNs) methodology is that it beco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Es'kin, Vasiliy A, Davydov, Danil V, Egorova, Ekaterina D, Malkhanov, Alexey O, Akhukov, Mikhail A, Smorkalov, Mikhail E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method is presented that allows to reduce a problem described by differential equations with initial and boundary conditions to the problem described only by differential equations. The advantage of using the modified problem for physics-informed neural networks (PINNs) methodology is that it becomes possible to represent the loss function in the form of a single term associated with differential equations, thus eliminating the need to tune the scaling coefficients for the terms related to boundary and initial conditions. The weighted loss functions respecting causality were modified and new weighted loss functions based on generalized functions are derived. Numerical experiments have been carried out for a number of problems, demonstrating the accuracy of the proposed methods.
ISSN:2331-8422