Hopf algebras and alternating multiple zeta values in positive characteristic

In \cite{IKLNDP23} we presented a systematic study of algebra structures of multiple zeta values in positive characteristic introduced by Thakur as analogues of classical multiple zeta values of Euler. In this paper we construct algebra and Hopf algebra structures of alternating multiple zeta values...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Im, Bo-Hae, Kim, Hojin, Le, Khac Nhuan, Tuan Ngo Dac, Lan Huong Pham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In \cite{IKLNDP23} we presented a systematic study of algebra structures of multiple zeta values in positive characteristic introduced by Thakur as analogues of classical multiple zeta values of Euler. In this paper we construct algebra and Hopf algebra structures of alternating multiple zeta values introduced by Harada, extending our previous work. Our results could be considered as an analogue of those of Hoffman \cite{Hof00} and Racinet \cite{Rac02} in the classical setting. The proof is based on two new ingredients: the first one is a direct and explicit construction of the shuffle Hopf algebra structure, and the second one is the notion of horizontal maps.
ISSN:2331-8422