Mosaic Patterned Surfaces toward Generating Hardly‐Volatile Capsular Droplet Arrays for High‐Precision Droplet‐Based Storage and Detection
Precise detection involving droplets based on functional surfaces is promising for the parallelization and miniaturization of platforms and is significant in epidemic investigation, analyte recognition, environmental simulation, combinatorial chemistry, etc. However, a challenging and considerable t...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-04, Vol.19 (14), p.e2206274-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precise detection involving droplets based on functional surfaces is promising for the parallelization and miniaturization of platforms and is significant in epidemic investigation, analyte recognition, environmental simulation, combinatorial chemistry, etc. However, a challenging and considerable task is obtaining mutually independent droplet arrays without cross‐contamination and simultaneously avoiding droplet evaporation‐caused quick reagent loss, inaccuracy, and failure. Herein, a strategy to generate mutually independent and hardly‐volatile capsular droplet arrays using innovative mosaic patterned surfaces is developed. The evaporation suppression of the capsular droplet arrays is 1712 times higher than the naked droplet. The high evaporation suppression of the capsular droplet arrays on the surfaces is attributed to synergistic blocking of the upper oil and bottom mosaic gasproof layer. The scale‐up of the capsular droplet arrays, the flexibility in shape, size, component (including aqueous, colloidal, acid, and alkali solutions), liquid volume, and the high‐precision hazardous substance testing proves the concept's high compatibility and practicability. The mutually independent capsular droplet arrays with amazingly high evaporation suppression are essential for the new generation of high‐performance open‐surface microfluidic chips used in COVID‐19 diagnosis and investigation, primary screening, in vitro enzyme reactions, environmental monitoring, nanomaterial synthesis, etc.
A new strategy using a mosaic triple‐patterned surface that provided mutually independent oil droplets and superamphiphilic gasproof elements to get hardly‐volatile capsular droplet arrays is proposed. The mosaic & patterned surface and the mutually independent and hardly‐volatile capsular droplet arrays enlighten the design ideas of more integrated and efficient functional surfaces and a new generation of open‐surface microfluidics. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202206274 |