Asymptotic base loci on hyper-Kähler manifolds

Given a projective hyper-K\"ahler manifold \(X\), we study the asymptotic base loci of big divisors on \(X\). We provide a numerical characterization of these loci and study how they vary while moving a big divisor class in the big cone, using the divisorial Zariski decomposition, and the Beauv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Denisi, Francesco Antonio, Ríos Ortiz, Ángel David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a projective hyper-K\"ahler manifold \(X\), we study the asymptotic base loci of big divisors on \(X\). We provide a numerical characterization of these loci and study how they vary while moving a big divisor class in the big cone, using the divisorial Zariski decomposition, and the Beauville-Bogomolov-Fujiki form. We determine the dual of the cones of \(k\)-ample divisors \(\mathrm{Amp}_k(X)\), for any \(1\leq k \leq \mathrm{dim}(X)\), answering affirmatively (in the case of projective hyper-K\"ahler manifolds) a question asked by Sam Payne. We provide a decomposition for the effective cone \(\mathrm{Eff}(X)\) into chambers of Mori-type, analogous to that for Mori dream spaces into Mori chambers. To conclude, we illustrate our results with several examples.
ISSN:2331-8422