Asymptotic base loci on hyper-Kähler manifolds
Given a projective hyper-K\"ahler manifold \(X\), we study the asymptotic base loci of big divisors on \(X\). We provide a numerical characterization of these loci and study how they vary while moving a big divisor class in the big cone, using the divisorial Zariski decomposition, and the Beauv...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a projective hyper-K\"ahler manifold \(X\), we study the asymptotic base loci of big divisors on \(X\). We provide a numerical characterization of these loci and study how they vary while moving a big divisor class in the big cone, using the divisorial Zariski decomposition, and the Beauville-Bogomolov-Fujiki form. We determine the dual of the cones of \(k\)-ample divisors \(\mathrm{Amp}_k(X)\), for any \(1\leq k \leq \mathrm{dim}(X)\), answering affirmatively (in the case of projective hyper-K\"ahler manifolds) a question asked by Sam Payne. We provide a decomposition for the effective cone \(\mathrm{Eff}(X)\) into chambers of Mori-type, analogous to that for Mori dream spaces into Mori chambers. To conclude, we illustrate our results with several examples. |
---|---|
ISSN: | 2331-8422 |