Second-order coupled tristable stochastic resonance and its application in bearing fault detection under different noises
Bearing fault is the most likely to occur in mechanical fault, and stochastic resonance (SR), as a noise enhanced signal processing tool, can find mechanical faults as early as possible, so as to avoid larger problems. However, most of the existing research methods are based on the first-order Lange...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2023-05, Vol.111 (10), p.8987-9009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bearing fault is the most likely to occur in mechanical fault, and stochastic resonance (SR), as a noise enhanced signal processing tool, can find mechanical faults as early as possible, so as to avoid larger problems. However, most of the existing research methods are based on the first-order Langevin equation. According to the previous studies of many scholars, the weak signal detection ability of the second-order system is better than that of the first-order system, and the coupled system also has better performance due to the addition of the control system. So, in order to detect the fault signal more easily, a second-order coupled tristable stochastic resonance system (SCTSR) based on the adaptive genetic algorithm (AGA) is proposed, it is an improvement on improving the first-order coupled tristable stochastic resonance system (FCTSR). First, based on the fourth-order Runge–Kutta algorithm (F-RK), the performances of monostable, bistable and tristable control systems to SCTSR are compared, it is verified that the monostable system has the best performance as SCTSR’s control system. Secondly, the equivalent potential function of SCTSR is derived, and the influences of each system parameters on it are researched. The output signal-to-noise ratio gain (
SNRG
) is chosen as a measure to verify that SCTSR’s performance is better than that of FCTSR, and the influences of parameters on
SNRG
are discussed. SCTSR and FCTSR are used to detect low-, high- and multi-frequency cosine signals combined with AGA. The simulation results are compared with the wavelet transform method, which proves the performance superiority of SR, and also prove that SCTSR is easier to detect weak signals and has a stronger de-noising ability. Finally, SCTSR and FCTSR are applied in bearing fault detection under Gaussian white noise and trichotomous noise. The results also prove that SCTSR can get larger peaks and
SNRG
, and it is easier to detect fault signals. This proves that SCTSR’s performance is superior that of other methods in bearing fault detection, and has better engineering application value. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-023-08303-2 |