Virtio-FPGA: a virtualization solution for SoC-attached FPGAs
Recently, FPGA accelerators have risen in popularity as they present a suitable way of satisfying the high-computation and low-power demands of real time applications. The modern electric transportation systems (such as aircraft, road vehicles) can greatly profit from embedded FPGAs, which incorpora...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, FPGA accelerators have risen in popularity as they present a suitable way of satisfying the high-computation and low-power demands of real time applications. The modern electric transportation systems (such as aircraft, road vehicles) can greatly profit from embedded FPGAs, which incorporate both high-performance and flexibility features into a single SoC. At the same time, the virtualization of FPGA resources aims to reinforce these systems with strong isolation, consolidation and security. In this paper, we present a novel virtualization framework aimed for SoC-attached FPGA devices, in a Linux and QEMU/KVM setup. We use Virtio as a means to enable the configuration of FPGA resources from guest systems in an efficient way. Also, we employ the Linux VFIO and Device Tree Overlays technologies in order to render the FPGA resources dynamically accessible to guest systems. The ability to dynamically configure and utilize the FPGA resources from a virtualization environment is described in details. The evaluation procedure of the solution is presented and the virtualization overhead is benchmarked as minimal (around 10%) when accessing the FPGA devices from guest systems. |
---|---|
ISSN: | 2331-8422 |