Streaming Graph Embeddings via Incremental Neighborhood Sketching
Graph embeddings have become a key paradigm to learn node representations and facilitate downstream graph analysis tasks. Many real-world scenarios such as online social networks and communication networks involve streaming graphs, where edges connecting nodes are continuously received in a streamin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-05, Vol.35 (5), p.5296-5310 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graph embeddings have become a key paradigm to learn node representations and facilitate downstream graph analysis tasks. Many real-world scenarios such as online social networks and communication networks involve streaming graphs, where edges connecting nodes are continuously received in a streaming manner, making the underlying graph structures evolve over time. Such a streaming graph raises great challenges for graph embedding techniques not only in capturing the structural dynamics of the graph, but also in efficiently accommodating high-speed edge streams. Against this background, we propose SGSketch, a highly-efficient streaming graph embedding technique via incremental neighborhood sketching. SGSketch cannot only generate high-quality node embeddings from a streaming graph by gradually forgetting outdated streaming edges, but also efficiently update the generated node embeddings via an incremental embedding updating mechanism. Our extensive evaluation compares SGSketch against a sizable collection of state-of-the-art techniques using both synthetic and real-world streaming graphs. The results show that SGSketch achieves superior performance on different graph analysis tasks, showing 31.9% and 21.9% improvement on average over the best-performing static and dynamic graph embedding baselines, respectively. Moreover, SGSketch is significantly more efficient in both embedding learning and incremental embedding updating processes, showing 54x-1813x and 118x-1955x speedup over the baseline techniques, respectively. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2022.3149999 |