A Tight Linear Bound to the Chromatic Number of (P5,K1+(K1∪K3))-Free Graphs

Let F 1 and F 2 be two disjoint graphs. The union F 1 ∪ F 2 is a graph with vertex set V ( F 1 ) ∪ V ( F 2 ) and edge set E ( F 1 ) ∪ E ( F 2 ) , and the join F 1 + F 2 is a graph with vertex set V ( F 1 ) ∪ V ( F 2 ) and edge set E ( F 1 ) ∪ E ( F 2 ) ∪ { x y | x ∈ V ( F 1 ) and y ∈ V ( F 2 ) } . I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2023-06, Vol.39 (3), Article 43
Hauptverfasser: Dong, Wei, Xu, Baogang, Xu, Yian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F 1 and F 2 be two disjoint graphs. The union F 1 ∪ F 2 is a graph with vertex set V ( F 1 ) ∪ V ( F 2 ) and edge set E ( F 1 ) ∪ E ( F 2 ) , and the join F 1 + F 2 is a graph with vertex set V ( F 1 ) ∪ V ( F 2 ) and edge set E ( F 1 ) ∪ E ( F 2 ) ∪ { x y | x ∈ V ( F 1 ) and y ∈ V ( F 2 ) } . In this paper, we present a characterization to ( P 5 , K 1 ∪ K 3 ) -free graphs, prove that χ ( G ) ≤ 2 ω ( G ) - 1 if G is ( P 5 , K 1 ∪ K 3 ) -free. Based on this result, we further prove that χ ( G ) ≤ max { 2 ω ( G ) , 15 } if G is a ( P 5 , K 1 + ( K 1 ∪ K 3 ) ) -free graph. We also construct a ( P 5 , K 1 + ( K 1 ∪ K 3 ) ) -free graph G with χ ( G ) = 2 ω ( G ) .
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-023-02642-y