Constructions of \(q\)-hyperbolic knots
We use Dehn surgery methods to construct infinite families of hyperbolic knots in the 3-sphere satisfying a weak form of the Turaev--Viro invariants volume conjecture. The results have applications to a conjecture of Andersen, Masbaum, and Ueno about quantum representations of surface mapping class...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use Dehn surgery methods to construct infinite families of hyperbolic knots in the 3-sphere satisfying a weak form of the Turaev--Viro invariants volume conjecture. The results have applications to a conjecture of Andersen, Masbaum, and Ueno about quantum representations of surface mapping class groups. We obtain an explicit family of pseudo-Anosov mapping classes acting on surfaces of any genus and with one boundary component that satisfy the conjecture. |
---|---|
ISSN: | 2331-8422 |