Constructions of \(q\)-hyperbolic knots

We use Dehn surgery methods to construct infinite families of hyperbolic knots in the 3-sphere satisfying a weak form of the Turaev--Viro invariants volume conjecture. The results have applications to a conjecture of Andersen, Masbaum, and Ueno about quantum representations of surface mapping class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Kalfagianni, Efstratia, Melby, Joseph M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use Dehn surgery methods to construct infinite families of hyperbolic knots in the 3-sphere satisfying a weak form of the Turaev--Viro invariants volume conjecture. The results have applications to a conjecture of Andersen, Masbaum, and Ueno about quantum representations of surface mapping class groups. We obtain an explicit family of pseudo-Anosov mapping classes acting on surfaces of any genus and with one boundary component that satisfy the conjecture.
ISSN:2331-8422