Inequalities of Riesz-Sobolev type for compact connected abelian groups

An analogue of the Riesz-Sobolev convolution inequality is formulated and proved for arbitrary compact connected Abelian groups. Maximizers are characterized, and a quantitative stability theorem is proved, under natural hypotheses. A corresponding stability theorem for sets whose sumset has nearly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2022-10, Vol.144 (5), p.1367-1435
Hauptverfasser: Christ, Michael, Iliopoulou, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 5
container_start_page 1367
container_title American journal of mathematics
container_volume 144
creator Christ, Michael
Iliopoulou, Marina
description An analogue of the Riesz-Sobolev convolution inequality is formulated and proved for arbitrary compact connected Abelian groups. Maximizers are characterized, and a quantitative stability theorem is proved, under natural hypotheses. A corresponding stability theorem for sets whose sumset has nearly minimal measure is also proved, sharpening recent results of other authors. For the special case of the group $\Bbb{R}/\Bbb{Z}$, a continuous deformation of sets is developed, under which a scaled Riesz-Sobolev functional is shown to be nondecreasing.
doi_str_mv 10.1353/ajm.2022.0032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2794719606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794719606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5b0f45986c7714528ac22d395bde4309d83edf4dfd018620e2f4dd5357e61d0d3</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKePvhd87ry5aZL2UYZOYSA4fQ5pk0pL13RJK8xfb8pEnw4HDt_lfoTcUlhRxtm9bvcrBMQVAMMzsqCQQyqYlOdkAQCYFgzlJbkKoY0VJOCCbF56e5h014yNDYmrk7eY3-nOla6zX8l4HGxSO59Ubj_oaozZ97YarUl0abtG98mnd9MQrslFrbtgb35zST6eHt_Xz-n2dfOyftimFZNiTHkJdcaLXFRS0oxjritEwwpeGpsxKEzOrKkzUxuguUCwGIvhjEsrqAHDluTuxB28O0w2jKp1k-_jSYWyyCQtBIi4Sk-ryrsQvK3V4Ju99kdFQc2uVHSlZldqdhX32R-1je_tp2D_wbkQKKjazT5nnYg86hMZ-wHa02w8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794719606</pqid></control><display><type>article</type><title>Inequalities of Riesz-Sobolev type for compact connected abelian groups</title><source>Project MUSE - Premium Collection</source><creator>Christ, Michael ; Iliopoulou, Marina</creator><creatorcontrib>Christ, Michael ; Iliopoulou, Marina</creatorcontrib><description>An analogue of the Riesz-Sobolev convolution inequality is formulated and proved for arbitrary compact connected Abelian groups. Maximizers are characterized, and a quantitative stability theorem is proved, under natural hypotheses. A corresponding stability theorem for sets whose sumset has nearly minimal measure is also proved, sharpening recent results of other authors. For the special case of the group $\Bbb{R}/\Bbb{Z}$, a continuous deformation of sets is developed, under which a scaled Riesz-Sobolev functional is shown to be nondecreasing.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2022.0032</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Group theory ; Stability ; Theorems</subject><ispartof>American journal of mathematics, 2022-10, Vol.144 (5), p.1367-1435</ispartof><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Oct 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-5b0f45986c7714528ac22d395bde4309d83edf4dfd018620e2f4dd5357e61d0d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://muse.jhu.edu/article/866261/pdf$$EPDF$$P50$$Gprojectmuse$$H</linktopdf><linktohtml>$$Uhttps://muse.jhu.edu/article/866261$$EHTML$$P50$$Gprojectmuse$$H</linktohtml><link.rule.ids>314,778,782,21110,27907,27908,56825,57385</link.rule.ids></links><search><creatorcontrib>Christ, Michael</creatorcontrib><creatorcontrib>Iliopoulou, Marina</creatorcontrib><title>Inequalities of Riesz-Sobolev type for compact connected abelian groups</title><title>American journal of mathematics</title><description>An analogue of the Riesz-Sobolev convolution inequality is formulated and proved for arbitrary compact connected Abelian groups. Maximizers are characterized, and a quantitative stability theorem is proved, under natural hypotheses. A corresponding stability theorem for sets whose sumset has nearly minimal measure is also proved, sharpening recent results of other authors. For the special case of the group $\Bbb{R}/\Bbb{Z}$, a continuous deformation of sets is developed, under which a scaled Riesz-Sobolev functional is shown to be nondecreasing.</description><subject>Group theory</subject><subject>Stability</subject><subject>Theorems</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoOKePvhd87ry5aZL2UYZOYSA4fQ5pk0pL13RJK8xfb8pEnw4HDt_lfoTcUlhRxtm9bvcrBMQVAMMzsqCQQyqYlOdkAQCYFgzlJbkKoY0VJOCCbF56e5h014yNDYmrk7eY3-nOla6zX8l4HGxSO59Ubj_oaozZ97YarUl0abtG98mnd9MQrslFrbtgb35zST6eHt_Xz-n2dfOyftimFZNiTHkJdcaLXFRS0oxjritEwwpeGpsxKEzOrKkzUxuguUCwGIvhjEsrqAHDluTuxB28O0w2jKp1k-_jSYWyyCQtBIi4Sk-ryrsQvK3V4Ju99kdFQc2uVHSlZldqdhX32R-1je_tp2D_wbkQKKjazT5nnYg86hMZ-wHa02w8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Christ, Michael</creator><creator>Iliopoulou, Marina</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20221001</creationdate><title>Inequalities of Riesz-Sobolev type for compact connected abelian groups</title><author>Christ, Michael ; Iliopoulou, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5b0f45986c7714528ac22d395bde4309d83edf4dfd018620e2f4dd5357e61d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Group theory</topic><topic>Stability</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christ, Michael</creatorcontrib><creatorcontrib>Iliopoulou, Marina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christ, Michael</au><au>Iliopoulou, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inequalities of Riesz-Sobolev type for compact connected abelian groups</atitle><jtitle>American journal of mathematics</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>144</volume><issue>5</issue><spage>1367</spage><epage>1435</epage><pages>1367-1435</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>An analogue of the Riesz-Sobolev convolution inequality is formulated and proved for arbitrary compact connected Abelian groups. Maximizers are characterized, and a quantitative stability theorem is proved, under natural hypotheses. A corresponding stability theorem for sets whose sumset has nearly minimal measure is also proved, sharpening recent results of other authors. For the special case of the group $\Bbb{R}/\Bbb{Z}$, a continuous deformation of sets is developed, under which a scaled Riesz-Sobolev functional is shown to be nondecreasing.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2022.0032</doi><tpages>69</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2022-10, Vol.144 (5), p.1367-1435
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_2794719606
source Project MUSE - Premium Collection
subjects Group theory
Stability
Theorems
title Inequalities of Riesz-Sobolev type for compact connected abelian groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inequalities%20of%20Riesz-Sobolev%20type%20for%20compact%20connected%20abelian%20groups&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Christ,%20Michael&rft.date=2022-10-01&rft.volume=144&rft.issue=5&rft.spage=1367&rft.epage=1435&rft.pages=1367-1435&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2022.0032&rft_dat=%3Cproquest_cross%3E2794719606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794719606&rft_id=info:pmid/&rfr_iscdi=true