Inequalities of Riesz-Sobolev type for compact connected abelian groups

An analogue of the Riesz-Sobolev convolution inequality is formulated and proved for arbitrary compact connected Abelian groups. Maximizers are characterized, and a quantitative stability theorem is proved, under natural hypotheses. A corresponding stability theorem for sets whose sumset has nearly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2022-10, Vol.144 (5), p.1367-1435
Hauptverfasser: Christ, Michael, Iliopoulou, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analogue of the Riesz-Sobolev convolution inequality is formulated and proved for arbitrary compact connected Abelian groups. Maximizers are characterized, and a quantitative stability theorem is proved, under natural hypotheses. A corresponding stability theorem for sets whose sumset has nearly minimal measure is also proved, sharpening recent results of other authors. For the special case of the group $\Bbb{R}/\Bbb{Z}$, a continuous deformation of sets is developed, under which a scaled Riesz-Sobolev functional is shown to be nondecreasing.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2022.0032