Finite‐element simulation for crystals with surface undulations based on Takagi–Taupin theory

A finite‐element method based on a weak formulation of the Takagi–Taupin equations was adopted to study the X‐ray diffraction of crystals with surface undulations. A general diffraction geometry was simulated to investigate the diffraction features caused by the surface undulations. The numerical re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2023-04, Vol.56 (2), p.391-400
Hauptverfasser: Wang, Yu-Hang, Li, Ming, Kang, Le, Jia, Quan-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite‐element method based on a weak formulation of the Takagi–Taupin equations was adopted to study the X‐ray diffraction of crystals with surface undulations. A general diffraction geometry was simulated to investigate the diffraction features caused by the surface undulations. The numerical results reveal that the effects of surface undulations on Bragg diffraction are local for those limited in the low‐frequency range and physically result from the refractive effect, brought on by the variation of the local asymmetry angle. Thus, a formula based on the local perfect flat crystal approximation was introduced to efficiently evaluate the change in the direction of the diffracted wave caused by surface undulations. Takagi–Taupin dynamical X‐ray diffraction simulations of crystals with surface undulations show that the influence of the surface undulations is local for those in the low‐frequency range and can be predicted by classical X‐ray dynamical theory.
ISSN:1600-5767
0021-8898
1600-5767
DOI:10.1107/S1600576723000808