In-plane flexoelectricity in two-dimensional \(D_{3d}\) crystals
We predict a large in-plane polarization response to bending in a broad class of trigonal two-dimensional crystals. We define and compute the relevant flexoelectric coefficients from first principles as linear-response properties of the undistorted layer, by using the primitive crystal cell. The ens...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We predict a large in-plane polarization response to bending in a broad class of trigonal two-dimensional crystals. We define and compute the relevant flexoelectric coefficients from first principles as linear-response properties of the undistorted layer, by using the primitive crystal cell. The ensuing response (evaluated for SnS\(_{2}\), silicene, phosphorene and RhI\(_{3}\) monolayers and for a hexagonal BN bilayer) is up to one order of magnitude larger than the out-of-plane components in the same material. We illustrate the topological implications of our findings by calculating the polarization textures that are associated with a variety of rippled and bent structures. We also determine the longitudinal electric fields induced by a flexural phonon at leading order in amplitude and momentum. |
---|---|
ISSN: | 2331-8422 |