Adaptive stabilized finite elements via residual minimization onto bubble enrichments

The Adaptive Stabilized Finite Element method (AS-FEM) developed in Calo et. al. combines the idea of the residual minimization method with the inf-sup stability offered by the discontinuous Galerkin (dG) frameworks. As a result, the discretizations deliver stabilized approximations and residual rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Hasbani, José G, Sepúlveda, Paulina, Muga, Ignacio, Calo, Victor M, Rojas, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hasbani, José G
Sepúlveda, Paulina
Muga, Ignacio
Calo, Victor M
Rojas, Sergio
description The Adaptive Stabilized Finite Element method (AS-FEM) developed in Calo et. al. combines the idea of the residual minimization method with the inf-sup stability offered by the discontinuous Galerkin (dG) frameworks. As a result, the discretizations deliver stabilized approximations and residual representatives in the dG space that can drive automatic adaptivity. We generalize AS FEM by considering continuous test spaces; thus, we propose a residual minimization method on a stable Continuous Interior Penalty (CIP) formulation that considers a C0-conforming trial FEM space and a test space based on the enrichment of the trial space by bubble functions. In our numerical experiments, the test space choice results in a significant reduction of the total degrees of freedom compared to the dG test spaces of Calo et. al. that converge at the same rate. Moreover, as trial and test spaces are C0-conforming, implementing a full dG data structure is unnecessary, simplifying the method's implementation considerably and making it appealing for industrial applications, see Labanda et. al.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2794389972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794389972</sourcerecordid><originalsourceid>FETCH-proquest_journals_27943899723</originalsourceid><addsrcrecordid>eNqNi8sKgkAUQIcgSMp_uNBasBlNXUYUfUCtZcwrXRlnbB4u_Pok-oBWZ3HOWbGIC3FIyozzDYud69M05ceC57mI2OPUytHThOC8bEjRjC10pMkjoMIBtXcwkQSLjtogFQyLHGiWnowGo72BJjSNWnJt6fn6Hju27qRyGP-4Zfvr5X6-JaM174DO170JVi-q5kWVibKqCi7-qz5em0Ik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794389972</pqid></control><display><type>article</type><title>Adaptive stabilized finite elements via residual minimization onto bubble enrichments</title><source>Free E- Journals</source><creator>Hasbani, José G ; Sepúlveda, Paulina ; Muga, Ignacio ; Calo, Victor M ; Rojas, Sergio</creator><creatorcontrib>Hasbani, José G ; Sepúlveda, Paulina ; Muga, Ignacio ; Calo, Victor M ; Rojas, Sergio</creatorcontrib><description>The Adaptive Stabilized Finite Element method (AS-FEM) developed in Calo et. al. combines the idea of the residual minimization method with the inf-sup stability offered by the discontinuous Galerkin (dG) frameworks. As a result, the discretizations deliver stabilized approximations and residual representatives in the dG space that can drive automatic adaptivity. We generalize AS FEM by considering continuous test spaces; thus, we propose a residual minimization method on a stable Continuous Interior Penalty (CIP) formulation that considers a C0-conforming trial FEM space and a test space based on the enrichment of the trial space by bubble functions. In our numerical experiments, the test space choice results in a significant reduction of the total degrees of freedom compared to the dG test spaces of Calo et. al. that converge at the same rate. Moreover, as trial and test spaces are C0-conforming, implementing a full dG data structure is unnecessary, simplifying the method's implementation considerably and making it appealing for industrial applications, see Labanda et. al.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data structures ; Finite element method ; Industrial applications ; Mathematical analysis ; Optimization</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hasbani, José G</creatorcontrib><creatorcontrib>Sepúlveda, Paulina</creatorcontrib><creatorcontrib>Muga, Ignacio</creatorcontrib><creatorcontrib>Calo, Victor M</creatorcontrib><creatorcontrib>Rojas, Sergio</creatorcontrib><title>Adaptive stabilized finite elements via residual minimization onto bubble enrichments</title><title>arXiv.org</title><description>The Adaptive Stabilized Finite Element method (AS-FEM) developed in Calo et. al. combines the idea of the residual minimization method with the inf-sup stability offered by the discontinuous Galerkin (dG) frameworks. As a result, the discretizations deliver stabilized approximations and residual representatives in the dG space that can drive automatic adaptivity. We generalize AS FEM by considering continuous test spaces; thus, we propose a residual minimization method on a stable Continuous Interior Penalty (CIP) formulation that considers a C0-conforming trial FEM space and a test space based on the enrichment of the trial space by bubble functions. In our numerical experiments, the test space choice results in a significant reduction of the total degrees of freedom compared to the dG test spaces of Calo et. al. that converge at the same rate. Moreover, as trial and test spaces are C0-conforming, implementing a full dG data structure is unnecessary, simplifying the method's implementation considerably and making it appealing for industrial applications, see Labanda et. al.</description><subject>Data structures</subject><subject>Finite element method</subject><subject>Industrial applications</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAUQIcgSMp_uNBasBlNXUYUfUCtZcwrXRlnbB4u_Pok-oBWZ3HOWbGIC3FIyozzDYud69M05ceC57mI2OPUytHThOC8bEjRjC10pMkjoMIBtXcwkQSLjtogFQyLHGiWnowGo72BJjSNWnJt6fn6Hju27qRyGP-4Zfvr5X6-JaM174DO170JVi-q5kWVibKqCi7-qz5em0Ik</recordid><startdate>20230331</startdate><enddate>20230331</enddate><creator>Hasbani, José G</creator><creator>Sepúlveda, Paulina</creator><creator>Muga, Ignacio</creator><creator>Calo, Victor M</creator><creator>Rojas, Sergio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230331</creationdate><title>Adaptive stabilized finite elements via residual minimization onto bubble enrichments</title><author>Hasbani, José G ; Sepúlveda, Paulina ; Muga, Ignacio ; Calo, Victor M ; Rojas, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27943899723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data structures</topic><topic>Finite element method</topic><topic>Industrial applications</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hasbani, José G</creatorcontrib><creatorcontrib>Sepúlveda, Paulina</creatorcontrib><creatorcontrib>Muga, Ignacio</creatorcontrib><creatorcontrib>Calo, Victor M</creatorcontrib><creatorcontrib>Rojas, Sergio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasbani, José G</au><au>Sepúlveda, Paulina</au><au>Muga, Ignacio</au><au>Calo, Victor M</au><au>Rojas, Sergio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive stabilized finite elements via residual minimization onto bubble enrichments</atitle><jtitle>arXiv.org</jtitle><date>2023-03-31</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The Adaptive Stabilized Finite Element method (AS-FEM) developed in Calo et. al. combines the idea of the residual minimization method with the inf-sup stability offered by the discontinuous Galerkin (dG) frameworks. As a result, the discretizations deliver stabilized approximations and residual representatives in the dG space that can drive automatic adaptivity. We generalize AS FEM by considering continuous test spaces; thus, we propose a residual minimization method on a stable Continuous Interior Penalty (CIP) formulation that considers a C0-conforming trial FEM space and a test space based on the enrichment of the trial space by bubble functions. In our numerical experiments, the test space choice results in a significant reduction of the total degrees of freedom compared to the dG test spaces of Calo et. al. that converge at the same rate. Moreover, as trial and test spaces are C0-conforming, implementing a full dG data structure is unnecessary, simplifying the method's implementation considerably and making it appealing for industrial applications, see Labanda et. al.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2794389972
source Free E- Journals
subjects Data structures
Finite element method
Industrial applications
Mathematical analysis
Optimization
title Adaptive stabilized finite elements via residual minimization onto bubble enrichments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20stabilized%20finite%20elements%20via%20residual%20minimization%20onto%20bubble%20enrichments&rft.jtitle=arXiv.org&rft.au=Hasbani,%20Jos%C3%A9%20G&rft.date=2023-03-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2794389972%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794389972&rft_id=info:pmid/&rfr_iscdi=true