Adaptive stabilized finite elements via residual minimization onto bubble enrichments
The Adaptive Stabilized Finite Element method (AS-FEM) developed in Calo et. al. combines the idea of the residual minimization method with the inf-sup stability offered by the discontinuous Galerkin (dG) frameworks. As a result, the discretizations deliver stabilized approximations and residual rep...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Adaptive Stabilized Finite Element method (AS-FEM) developed in Calo et. al. combines the idea of the residual minimization method with the inf-sup stability offered by the discontinuous Galerkin (dG) frameworks. As a result, the discretizations deliver stabilized approximations and residual representatives in the dG space that can drive automatic adaptivity. We generalize AS FEM by considering continuous test spaces; thus, we propose a residual minimization method on a stable Continuous Interior Penalty (CIP) formulation that considers a C0-conforming trial FEM space and a test space based on the enrichment of the trial space by bubble functions. In our numerical experiments, the test space choice results in a significant reduction of the total degrees of freedom compared to the dG test spaces of Calo et. al. that converge at the same rate. Moreover, as trial and test spaces are C0-conforming, implementing a full dG data structure is unnecessary, simplifying the method's implementation considerably and making it appealing for industrial applications, see Labanda et. al. |
---|---|
ISSN: | 2331-8422 |