Dilational Symmetries of Decomposition and Coorbit Spaces

We investigate the invariance properties of general wavelet coorbit spaces and Besov-type decomposition spaces under dilations by matrices. We show that these matrices can be characterized by quasi-isometry properties with respect to a certain metric in frequency domain. We formulate versions of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Führ, Hartmut, Reihaneh Raisi Tousi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the invariance properties of general wavelet coorbit spaces and Besov-type decomposition spaces under dilations by matrices. We show that these matrices can be characterized by quasi-isometry properties with respect to a certain metric in frequency domain. We formulate versions of this phenomenon both for the decomposition and coorbit space settings. We then apply the general results to a particular class of dilation groups, the so-called shearlet dilation groups. We present a general, algebraic characterization of matrices the are coorbit compatible with a given shearlet dilation group. We determine the groups of compatible dilations for a variety of concrete examples.
ISSN:2331-8422