Dilational Symmetries of Decomposition and Coorbit Spaces
We investigate the invariance properties of general wavelet coorbit spaces and Besov-type decomposition spaces under dilations by matrices. We show that these matrices can be characterized by quasi-isometry properties with respect to a certain metric in frequency domain. We formulate versions of thi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the invariance properties of general wavelet coorbit spaces and Besov-type decomposition spaces under dilations by matrices. We show that these matrices can be characterized by quasi-isometry properties with respect to a certain metric in frequency domain. We formulate versions of this phenomenon both for the decomposition and coorbit space settings. We then apply the general results to a particular class of dilation groups, the so-called shearlet dilation groups. We present a general, algebraic characterization of matrices the are coorbit compatible with a given shearlet dilation group. We determine the groups of compatible dilations for a variety of concrete examples. |
---|---|
ISSN: | 2331-8422 |