Model-free and Model-based Learning as Joint Drivers of Investor Behavior

Motivated by neural evidence on the brain's computations, cognitive scientists are increasingly adopting a framework that combines two systems, namely “model-free” and “model-based” learning. We import this framework into a financial setting, study its properties, and use it to account for a ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NBER Working Paper Series 2023-03
Hauptverfasser: Barberis, Nicholas C, Jin, Lawrence J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by neural evidence on the brain's computations, cognitive scientists are increasingly adopting a framework that combines two systems, namely “model-free” and “model-based” learning. We import this framework into a financial setting, study its properties, and use it to account for a range of facts about investor behavior. These include extrapolative demand, experience effects, the disconnect between investor allocations and beliefs in the frequency domain and the cross-section, the inertia in investors’ allocations, and stock market non-participation. Our results suggest that model-free learning plays a significant role in the behavior of some investors.
ISSN:0898-2937
DOI:10.3386/w31081