Effects of surface tension reduction on wind-wave growth and air–water scalar transfer

Effects of surface tension reduction on wind-wave growth are investigated using direct numerical simulations of air–water two-phase turbulent flows. The incompressible Navier–Stokes equations for air and water sides are solved using an arbitrary Lagrangian–Eulerian method with boundary-fitted moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-04, Vol.960, Article A22
Hauptverfasser: Matsuda, Keigo, Komori, Satoru, Takagaki, Naohisa, Onishi, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effects of surface tension reduction on wind-wave growth are investigated using direct numerical simulations of air–water two-phase turbulent flows. The incompressible Navier–Stokes equations for air and water sides are solved using an arbitrary Lagrangian–Eulerian method with boundary-fitted moving grids. The wave growth of finite-amplitude and non-breaking gravity–capillary waves, whose wavelength is less than 0.07 m, is simulated for two cases of different surface tensions under a low-wind-speed condition of several metres per second. The results show that significant wave height for the smaller surface tension case increases faster than that for the larger surface tension case. Energy fluxes for gravity and capillary wave scales reveal that when the surface tension is reduced, the energy transfer from the significant gravity waves to capillary waves decreases, and the significant waves accumulate more energy supplied by wind. This results in faster wave growth for the smaller surface tension case. The effect on the scalar transfer across the air–water interface is also investigated. The results show that the scalar transfer coefficient on the water side decreases due to the surface tension reduction. The decrease is caused by suppression of turbulence in the water side. In order to support the conjecture, the surface tension effect is compared with laboratory experiments in a small wind-wave tank.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2023.144