Numerical study of anisotropic diffusion in Turing patterns based on Finsler geometry modeling

We numerically study the anisotropic Turing patterns (TPs) of an activator-inhibitor system, focusing on anisotropic diffusion by using the Finsler geometry (FG) modeling technique. In the FG modeling prescription, the diffusion coefficients are dynamically generated to be direction dependent owing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Diguet, Gildas, Nakayama, Madoka, Tasaki, Sohei, Kato, Fumitake, Koibuchi, Hiroshi, Uchimoto, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We numerically study the anisotropic Turing patterns (TPs) of an activator-inhibitor system, focusing on anisotropic diffusion by using the Finsler geometry (FG) modeling technique. In the FG modeling prescription, the diffusion coefficients are dynamically generated to be direction dependent owing to an internal degree of freedom (IDOF) and its interaction with the activator and inhibitor under the presence of thermal fluctuations. In this sense, FG modeling contrasts sharply with the standard numerical technique, where direction-dependent diffusion coefficients are assumed in the reaction-diffusion (RD) equations of Turing. To find the solution of the RD equations, we use a hybrid numerical technique as a combination of the metropolis Monte Carlo method for IDOF updates and discrete RD equations for steady-state configurations of activator-inhibitor variables. We find that the newly introduced IDOF and its interaction are one possible origin of spontaneously emergent anisotropic patterns on living organisms such as zebra and fishes. Moreover, the IDOF makes TPs controllable by external conditions if the IDOF is identified with lipids on cells or cell mobility.
ISSN:2331-8422