Scattering Theory for a Class of Radial Focusing Inhomogeneous Hartree Equations
This paper studies the asymptotic behavior of global solutions to the generalized Hartree equation i u ̇ + Δ u + ( I α ∗ | ⋅ | b | u | p ) | x | b | u | p − 2 u = 0. Indeed, using a new approach due to (Dodson et al. Proc. Amer. Math. Soc. 145 (11), 4859–4867, 2017 ), one proves the scattering of th...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2023-04, Vol.58 (4), p.617-643 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the asymptotic behavior of global solutions to the generalized Hartree equation
i
u
̇
+
Δ
u
+
(
I
α
∗
|
⋅
|
b
|
u
|
p
)
|
x
|
b
|
u
|
p
−
2
u
=
0.
Indeed, using a new approach due to (Dodson et al. Proc. Amer. Math. Soc.
145
(11), 4859–4867,
2017
), one proves the scattering of the above inhomogeneous Choquard equation in the mass-super-critical and energy sub-critical regimes with radial setting. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-021-09952-x |