Large Language Models are Diverse Role-Players for Summarization Evaluation

Text summarization has a wide range of applications in many scenarios. The evaluation of the quality of the generated text is a complex problem. A big challenge to language evaluation is that there is a clear divergence between existing metrics and human evaluation. A document summary's quality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Wu, Ning, Gong, Ming, Shou, Linjun, Liang, Shining, Jiang, Daxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Text summarization has a wide range of applications in many scenarios. The evaluation of the quality of the generated text is a complex problem. A big challenge to language evaluation is that there is a clear divergence between existing metrics and human evaluation. A document summary's quality can be assessed by human annotators on various criteria, both objective ones like grammar and correctness, and subjective ones like informativeness, succinctness, and appeal. Most of the automatic evaluation methods like BLUE/ROUGE may be not able to adequately capture the above dimensions. In this paper, we propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects. First, we propose to model objective and subjective dimensions of generated text based on roleplayers prompting mechanism. Furthermore, we introduce a context-based prompting mechanism that is able to generate dynamic roleplayer profiles based on input context. Finally, we design a multi-roleplayer prompting technology based on batch prompting and integrate multiple outputs into the final evaluation results. Experimental results on three real datasets for summarization show that our model is highly competitive and has a very high consistency with human annotators.
ISSN:2331-8422