On Polyadic Liouville Numbers
The study of polyadic Liouville numbers has begun relatively recently. The canonical expansion of a polyadic number λ is of the form This series converges in any field Q p of p -adic numbers. A polyadic number λ is called a polyadic Liouville number (or a Liouville polyadic number) if for any and P...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2022-12, Vol.106 (Suppl 2), p.S161-S164 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of polyadic Liouville numbers has begun relatively recently. The canonical expansion of a polyadic number λ is of the form
This series converges in any field Q
p
of
p
-adic numbers. A polyadic number λ is called a polyadic Liouville number (or a Liouville polyadic number) if for any
and
P
there exists a positive integer
A
such that for all primes
p
satisfying
the inequality
holds. Given a positive integer
m
, let
denote the result of
k
raised to the power
k
successively
m
times. Let
, and let
Theorem 1 states that, for any positive integer
and any prime number
p
, the series
converges to a transcendental element of the ring Z
p
. In other words, the polyadic number α is globally transcendental. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562422700302 |